Déficit en MCAD
Révision par les pairs par le Dr Adrian Bonsall, MBBSDernière mise à jour par le Dr Colin Tidy, MRCGPDernière mise à jour le 20 juin 2014
Répond aux besoins du patient lignes directrices éditoriales
- TéléchargerTélécharger
- Partager
Cette page a été archivée.
Il n'a pas été revu récemment et n'est pas à jour. Les liens externes et les références peuvent ne plus fonctionner.
Professionnels de la santé
Les articles de référence professionnelle sont destinés aux professionnels de la santé. Ils sont rédigés par des médecins britanniques et s'appuient sur les résultats de la recherche et sur les lignes directrices britanniques et européennes. L'article Test de dépistage chez le nouveau-né ou l'un de nos autres articles sur la santé vous sera peut-être plus utile.
Dans cet article :
Synonyms: medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, ACADM deficiency
This is an autosomal recessive inherited disorder of fatty acid metabolism, caused by a mutation of the medium-chain acyl-CoA dehydrogenase gene (ACADM) on chromosome 1. The gene has been mapped to locus 1p31; several allelic variations have been reported. The most common mutation is called G985. This is because of a substitution of a guanine for an adenine nucleotide at the 985th residue.
Poursuivre la lecture ci-dessous
Physiopathologie
Fatty acids are unable to be metabolised beyond the medium-chain size (8-12 carbon stage), and gluconeogenesis is effectively inhibited. In response to any fasting or metabolic stress (eg, illness) the body is unable to metabolise fat (so no ketones are produced), and continues to metabolise glucose producing hypoglycaemia.1 The clinical result is severe hypoglycaemia and hypoketonuria, with accumulation of monocarboxylic fatty acids and dicarboxylic organic acids.
Épidémiologie
The incidence is up to 1 in every 12,000 births.2
Poursuivre la lecture ci-dessous
Présentation
Typically this presents clinically with failure of fatty acid oxidation after fasting and an inability to generate energy during periods of increased energy demand. This may cause variable presentation, including symptomatic hypoglycaemia, hepatic encephalopathy or sudden unexpected infant death. Most cases present before 2 years of age (mean age 13 months), although a variable spectrum of disease is increasingly recognised, with presentations both in the neonatal period and in adulthood.
About a third of affected individuals remain asymptomatic throughout life but may be at risk of metabolic decompensation in periods of critical energy supply - eg, during infection or prolonged fasting.3
Age at presentation is quite variable.
It most commonly presents in infants aged >3 months, when overnight feeds reduce in frequency. The gap between feeds is then long enough for acute hypoglycaemia to occur, producing symptoms of preprandial irritability, drowsiness, jitteriness, sweating, coma and seizures.
It can present as sudden death in adults. There is a 25% mortality rate in undiagnosed cases.
It can present with:
Life-threatening hypoketotic hypoglycaemic coma.
Acidose métabolique.
Encéphalopathie.
Hepatomegaly and fatty infiltration of viscera.
In later childhood it may present with episodic hypoglycaemia - eg, with sweating, collapse, confusion, or developmental delay.
It has been reported presenting after a first episode of alcohol intoxication.4
It very occasionally presents in adulthood with muscle weakness and fatigue.
Survivors of acute episodes may have severe hypoglycaemia-induced brain damage.
Enquêtes
These may be normal in between attacks.
Acutely - hypoglycaemia.
U&E may show high or low bicarbonate and reduced anion gap.
LFTs may show elevated enzymes, low plasma carnitine.
Urine - medium-chain dicarboxylic aciduria and absent ketones.
Skin biopsy can be performed to confirm diagnosis of primary carnitine deficiency - demonstrating reduced carnitine transport in fibroblasts. Fibroblasts may be used for fatty acid oxidation studies or enzyme assay.
Poursuivre la lecture ci-dessous
Gestion
Avoidance of fasting.5A maximum duration of fasting in children with MCAD deficiency of:6
Between 6 months and 1 year of age - eight hours.
In the second year of life - ten hours.
Thereafter - twelve hours.
There are no firm guidelines on the duration of fasting during situations of intercurrent illness, especially with fever.
Because the fundamental biochemical defect is in fatty acid oxidation, the composition of the diet should be adjusted to provide greater calories in carbohydrates and proteins, while minimising lipids.
Daily carnitine supplementation may be required.7
Genetic counselling should be provided for family members.
The heterozygous state is quite common. Testing for the gene should be offered to first-degree relatives of an affected child.
Complications
Frequent episodes of severe hypoglycaemia carry a risk of adverse effects in the CNS.
Hypoglycaemia and hyperammonaemia may cause cerebral oedema and prolonged coma.
Pronostic3
About 25% of patients with undiagnosed MCAD deficiency die at or shortly after the first presentation. A further large group of undiagnosed patients presents too late to prevent long-term neurological disability.
If the diagnosis is made early, children with this deficiency can expect to lead a full and normal life, with simple dietary treatment aimed mainly at the avoidance of fasting.
Diagnostic prénatal
This is technically possible by demonstrating a marked reduction in octanoate oxidation in cultured amniotic cells obtained via amniocentesis.
Neonatal screening
Biochemically, MCAD deficiency is characterised by elevated medium-chain acylcarnitines in blood, particularly octanoylcarnitine. It can be identified by screening of dried blood spots via quantitative detection of acylcarnitines using mass spectrometry.8
The Department of Health introduced routine MCAD deficiency screening in the neonatal blood spot screen from February 2009.9
Autres lectures et références
- Acyl-CoA Dehydrogenase, medium-chain, deficiency of, ACADMDL'hérédité mendélienne chez l'homme en ligne (OMIM)
- Carroll JC, Gibbons CA, Blaine SM, et al; Genetics: newborn screening for MCAD deficiency. Can Fam Physician. 2009 May;55(5):487.
- Loughrey C, Bennett MJ; Screening for MCAD deficiency in newborns. BMJ. 2009 Mar 12;338:b971. doi: 10.1136/bmj.b971.
- Mayell SJ, Edwards L, Reynolds FE, et al; Late presentation of medium-chain acyl-CoA dehydrogenase deficiency. J Inherit Metab Dis. 2006 Nov 30;.
- Touw CM, Smit GP, Niezen-Koning KE, et al; In vitro and in vivo consequences of variant medium-chain acyl-CoA dehydrogenase genotypes. Orphanet J Rare Dis. 2013 Mar 20;8:43. doi: 10.1186/1750-1172-8-43.
- Derks TG, van Spronsen FJ, Rake JP, et al; Safe and unsafe duration of fasting for children with MCAD deficiency. Eur J Pediatr. 2007 Jan;166(1):5-11. Epub 2006 Jun 21.
- Couce ML, Sanchez-Pintos P, Diogo L, et al; Newborn screening for medium-chain acyl-CoA dehydrogenase deficiency: regional experience and high incidence of carnitine deficiency. Orphanet J Rare Dis. 2013 Jul 10;8:102. doi: 10.1186/1750-1172-8-102.
- Kennedy S, Potter BK, Wilson K, et al; The first three years of screening for medium chain acyl-CoA dehydrogenase deficiency (MCADD) by newborn screening ontario. BMC Pediatr. 2010 Nov 17;10:82. doi: 10.1186/1471-2431-10-82.
- Programme de dépistage de la tache sanguine chez le nouveau-néPublic Health England
Poursuivre la lecture ci-dessous
Historique de l'article
Les informations contenues dans cette page sont rédigées et évaluées par des cliniciens qualifiés.
20 Jun 2014 | Dernière version

Demandez, partagez, connectez-vous.
Parcourez les discussions, posez des questions et partagez vos expériences sur des centaines de sujets liés à la santé.

Vous ne vous sentez pas bien ?
Évaluez gratuitement vos symptômes en ligne